

KLINGER **BALLOSTAR®** KHA

3-piece ball valves DN 10 - 150

KLINGER FLUID CONTROL

Today for tomorrow

As a subsidiary of the KLINGER Group, KLINGER Fluid Control has been developing, manufacturing and maintaining high-quality industrial valves at the business location Gumpoldskirchen/Austria for more than 125 years. Via the global distribution and service network, KLINGER Fluid Control offers both standardized and tailored products, services as well as solutions for customers around the globe.

Products from KLINGER Fluid Control are characterized by their high level of reliability as well as by an above average lifecycle at a simultaneously very total cost of ownership (TCO). As a solutions partner, KLINGER Fluid Control creates customer benefits with added value. In this regard, the focus is on the following core competences:

ENCOMPASSING SERVICE

- » Application expertise
- » Product trainings
- » Fast quotation and order processing
- » Customer-specific logistics concepts
- » Supply of spare parts
- » Valve maintenance
- » On-site technical support

INNOVATIVE SOLUTIONS

- » State of the art development tools
- » Product development for different areas of application
- » Compilation of customer-specific special solutions
- » Automation solutions
- » Product tests in the company-own technical center
- » A wide range of certificates and approvals

OPERATIONAL EXCELLENCE

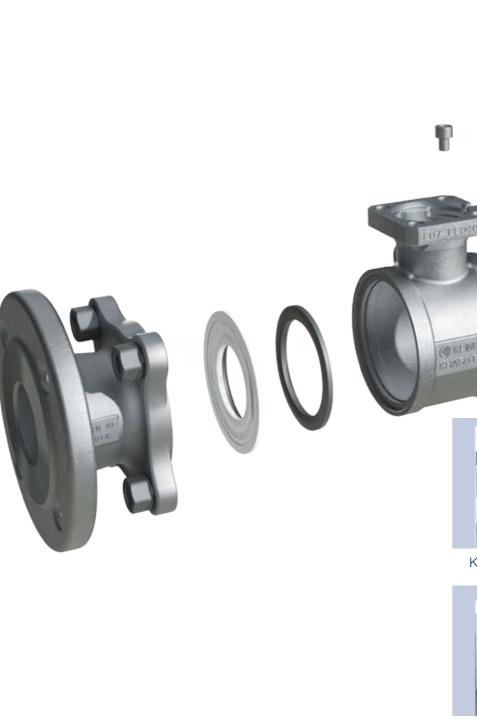
- » Flexible production
- » Transparency in the supply chain
- » Short delivery times
- » ISO 9001 certified quality
- » ISO 14001 as well as EMAS certified environmental management system

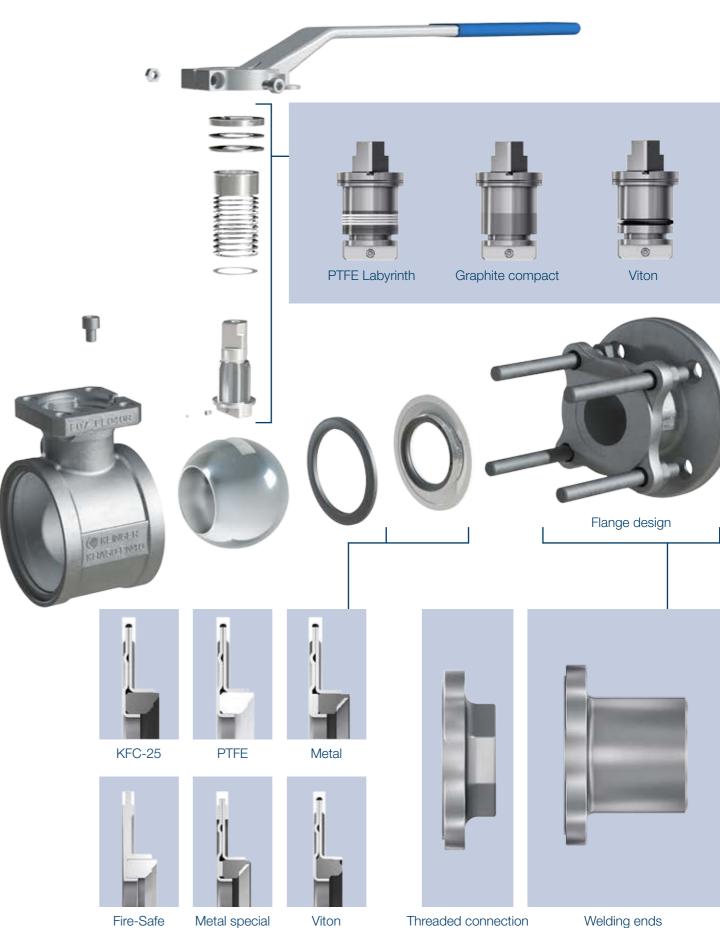
CONSISTENTLY **MODULAR**

One product – many applications

PRODUCT ADVANTAGES

- » Maintenance-free
- » Supports pressurization on both side
- » Bidirectional flow
- » Ball with a cylindrical full bore
- » Unique pre-stressed and elastic sealing system
- » Bidirectional sealing in accordance with EN 12266 -
- » Modular selection of system components
- » Serviceable without removal from the line
- » Antistatic design in accordance with ISO 7121 / EN 1983
- » Subsequent automation possible at any time (top flange in accordance with EN ISO 5211)


SPECIAL TYPES

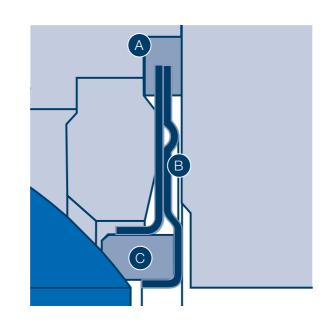

- » Metal seat (up to +400 °C) for abrasive media
- » Operating stem sealed by O-rings
- » Operating stem extension
- » Oxygen version (oil, grease and silicone-free)
- » Cryogenic version (down to -196 °C)
- » Fire-Safe version
- » Vacuum version
- » Gas version

PRODUCT DETAILS

PN	16/25/40/63/100
DN	10 - 150
Housing	Cast steel, stainless steel, grey cast iron, nodular cast iron, special materials upon request
Ball	Stainless steel
Operating stem	Stainless steel
Temperature	-196 °C to +400 °C
Design	Flanges (long, short), threaded connections, welding ends (long, short), full and reduced bore
Туре	Three-piece ball valve

04|05

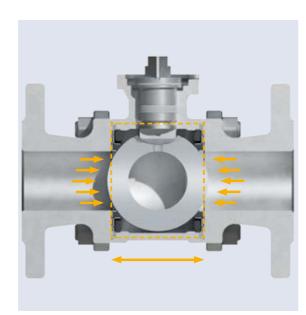
GREATEST SAFETY



The unique KLINGER sealing system with automatic sealing chamber

Leakages represent the worst case for any plant operator. Negative impacts on the environment as well as downtimes, harm to personnel and assets and in some cases heavy financial losses are just a few of the possible outcomes. A seal, which therefore "practices what it preaches", i.e. a valve capable of reliably fulfilling its shut-off function, is a must. With the KLINGER Ballostar® KHA, this is ensured in multiple ways: By means of the unique ball valve sealing system and the automatic sealing chamber.

THE SEALING SYSTEM


- A The sleeve reliably keeps the sealing element in the desired position. In the Fire-Safe design, a graphite ring adds additional protection against too high thermal loads.
- B The diaphragm spring determines the sealing stress for the entire lifecycle of the seal and simultaneously ensures the required pressure of the sealing ring. As a consequence, the seal remains - independent of the medium pressure and the flow direction - continuously tight.
- The sealing ring itself is surrounded on three sides by the springloaded sealing element and can therefore absorb major loads without deformation.

THE AUTOMATIC SEALING CHAMBER

The automatic sealing chamber utilizes spring loads in the two sealing elements for the function of the valve. The result: An automatic sealing chamber, in which the loads of the sealing elements simultaneously work bidirectionally. On the basis of this principle, the TÜV Bayern confirms: The automatic sealing chamber is also capable of replacing two unilaterally sealing standard valves. Primarily, this concerns safety lines in plants, especially those with alternating flow directions.

In the case of the KLINGER Ballostar® KHA, as opposed to conventional ball valves, the absorption area of the medium pressure is not limited to the ball area, but encompasses the entire sealing element (ball and area of the diaphragm spring). In the event of an increase of differential pressure, the additional forces increase as well - the preloaded diaphragm springs, which press against the ball, are subsequently relieved and service life further improved.

CERTIFIED QUALITY

The KLINGER Ballostar® KHA lives up to its promises

This is proven by various tests and certifications – for plant operators this means absolute safety in operation with guaranteed

» Valve according to "TA-Luft"

With a standard value of 10-4 mbar I/s, the KLINGER Ballostar® KHA significantly outperforms the requirements of the German Technical Instructions on Air Quality Control.

» Fire-Safe

The Fire-Safe tests in accordance with API Standard 607. 4th Edition and EN ISO 10497:2004 have been certified by the TÜV Austria.

» Valve for gaseous fuels

Due to its product characteristics, the KLINGER Ballostar® KHA can be tested as a safety shut-off installation for firing systems in accordance with the European Norm EN 161. Certification for selected types, in combination with special actuators, can be issued on demand.

» Valve for utilization with oxygen

The BAM Berlin has approved the KLINGER Ballostar® KHA for the utilization in combination with oxygen.

» Valve for gas supply

Certificate on the authorization to bear the ÖVGW gas quality

» Emission testing in accordance with VDI 2440

Certified emission testing pursuant to VDI 2440 for the KHA labyrinth stuffing box at room ambient temperature and at temperatures ≥ 250 °C. Testing of the KHA O-ring stuffing box (Viton) at ambient room temperature.

» Standard antistatic

The KLINGER Ballostar® KHA features standardized antistatic equipment in accordance with ISO 7121 and EN 1983 respectively. An antistatic ball ensures electrostatic discharge from DN 50 upwards.

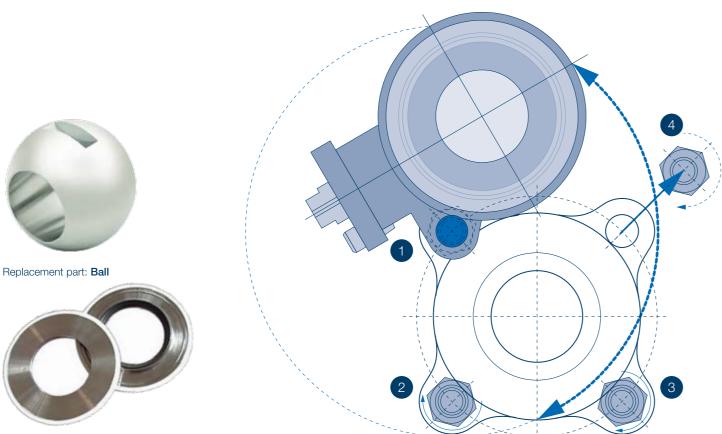
» Operational safety

The KLINGER Ballostar® KHA has a fitting for the installation of a locking device as a standard feature. This negates unintended utilization.

» 3.1 Final inspection certificate

In order to ensure quality, application safety and guaranteed tightness for the operator, the KLINGER Ballostar® KHA is standard-issued with a final inspection certificate on the basis of the norm EN 10204 - 3.1.

SUSTAINABLE EFFICIENCY



Reliability across the entire lifecycle

The KLINGER Ballostar® KHA is characterized by its low costs across the entire lifecycle of the valve (TCO) as well as by its high durability. As a result of its modularity, only affected components need to be replaced in the course of maintenance. This significantly increases the operating time of the valve in the system. For the operator, this means lower costs with regard to plant maintenance, stock keeping as well as installation – at continuously high safety levels. With its unique design, the KLINGER Ballostar® KHA also offers plant operators the flexibility, which dynamic markets demand today: Thanks to a wide range of modular system components, which can be individually combined among themselves, the ball valve can be equipped, refitted or retrofitted for each application case.

SIMPLE MAINTENANCE WITHOUT REMOVAL FROM THE LINE

During maintenance and service work, the nuts 1-3 need to be removed with the bolt. The remaining nut (4) is only loosened. This allows the core element of the valve to be swung out without major effort and removal from the line, while simultaneously providing access to the two sealing elements in the bore. These can also be easily removed and replaced. Changing the stuffing box seals, removal of the ball and the operating stem (applies to the models KHA SL, SK and G) is also carried out in a very user-friendly manner.

BALLOSTAR® KHA

Overview of types

BALLOSTAR® KHA-FL

Long flange design

GENERAL FEATURES

- » 3-piece ball valve with full or reduced bore
- » Floating ball, antistatic, lockable
- » Double tightness in both directions
- » Modular system components

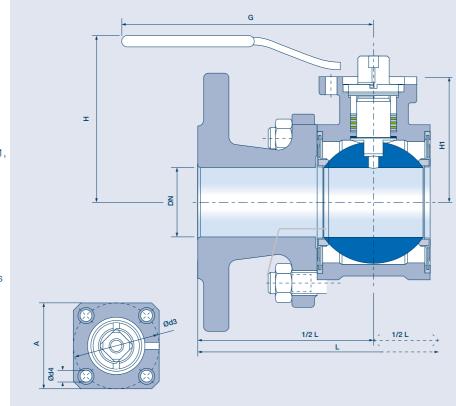
CONNECTIONS

Flange in accordance with EN 1092-1 (VIII, Xc) Flange in accordance with EN 1092-2 (III)

DIMENSIONS

Face-to-face dimensions in accordance with EN 558-1, series 1

ACCEPTANCE TESTING


- » Seat leak tightness: EN 12266-1 P12, leakage rate A
- » Tightness to atmosphere: EN 12266-1 P11
- » Strength: EN 12266-1 P10

AUTOMATION

Flange connection in accordance with ISO 5211, allows for direct mounting of an actuator or by means of brackets. Pneumatic and electrical actuators utilizable.

TEMPERATURE

-196 °C to +400 °C (see pT diagram)

KHA-FL VARIANTS

FULL BORE

Material: Grey cast iron EN-GJL-250 (Material code III)*

 $\ensuremath{^{*}}\text{refers}$ to flange, body made of steel casting

FULL BORE

Material: Steel casting 1.0619 (Material code VIII) Stainless steel casting 1.4408 (Material code Xc)

		Dillie	1510115			FIN			actu	ator		weignt
DN	L	Н	H1	G	Ш	VIII	Хс	ISO	Α	Ød3	Ød4	kg
15	130	80	35	130	16			F04	42	42	5.8	2.4
50	230	131	90	315	16			F07	70	70	10	13.8
65	290	141	100	315	16			F07	70	70	10	20.7
80	310	162	122	500	16			F10	102	102	12	30.9
100	350	176	135	500	16			F10	102	102	12	44
10	120	80	35	130		40	40	F04	42	42	5.8	2.3
15	130	80	35	130		40	40	F04	42	42	5.8	2.4
20	150	94	46	160		40	40	F04	42	42	5.8	3.7
25	160	98	50	160		40	40	F04	42	42	5.8	4.7
32	180	106	65	250		40	40	F05	50	50	7	7.4
40	200	113	72	250		40	40	F05	50	50	7	9.8
50	230	131	90	315		40	40	F07	70	70	10	14.5
65	290	141	100	315		40	40	F07	70	70	10	20.6
80	310	162	122	500		40	40	F10	102	102	12	31.6
100	350	176	135	500		40	40	F10	102	102	12	44.8
125	400	211	175	650		40	40	F12	125	125	15	75.7

Mounting flange for

BALLOSTAR® KHA-FL

Long flange design

GENERAL FEATURES

- » 3-piece ball valve with full or reduced bore
- » Floating ball, antistatic, lockable
- » Double tightness in both directions
- » Modular system components

CONNECTIONS

Flange in accordance with EN 1092-1 (VIII, Xc) Flange in accordance with EN 1092-2 (III)

DIMENSIONS

Face-to-face dimensions in accordance with EN 558-1, series 1 to DN 100R80 $\,$

Face-to-face dimensions in accordance with EN 558-1, series 27 for DN 125R100 and 150R125

ACCEPTANCE TESTING

- » Seat leak tightness: EN 12266-1 P12, leakage rate A
- » Tightness to atmosphere: EN 12266-1 P11
- » Strength: EN 12266-1 P10

AUTOMATION

Flange connection in accordance with ISO 5211, allows for direct mounting of an actuator or by means of brackets. Pneumatic and electrical actuators utilizable.

TEMPERATURE

-196 °C to +400 °C (see pT diagram)

KHA-FL VARIANTS

REDUCED BORE

Material: Grey cast iron EN-GJL-250 (Material code III)*

*refers to flange, body made of steel casting

REDUCED BORE

Material: Steel casting 1.0619 (Material code VIII) Stainless steel casting 1.4408 (Material code Xc)

	Dimensions				PN			Mounting flange for actuator				Weight
DN	L	Н	H1	G	Ш	VIII	Xc	ISO	A	Ød3	Ød4	kg
20R15	150	80	35	130	16			F04	42	42	5.8	2.7
25R20	160	94	46	160	16			F04	42	42	5.8	3.8
32R25	180	98	50	160	16			F04	42	42	5.8	5.7
40R32	200	106	65	250	16			F05	50	50	7	7.5
50R40	230	113	72	250	16			F05	50	50	7	10.7
65R50	290	131	90	315	16			F07	70	70	10	16.5
80R65	310	141	100	315	16			F07	70	70	10	22.3
100R80	350	162	122	500	16			F10	102	102	12	34
125R100	325	176	135	500	16			F10	102	102	12	45.9
150R125	350	211	175	650	16			F12	125	125	15	73
20R15	150	80	35	130		40	40	F04	42	42	5.8	3.2
25R20	160	94	46	160		40	40	F04	42	42	5.8	4.4
32R25	180	98	50	160		40	40	F04	42	42	5.8	5.9
40R32	200	106	65	250		40	40	F05	50	50	7	8.1

230 113 72 250

325 176 135 500

40 40 F05 50 50 7

40 40 F10 102 102 12

BALLOSTAR® KHA-FK

Short flange design

GENERAL FEATURES

- » 3-piece ball valve with full or reduced bore
- » Floating ball, antistatic, lockable
- » Double tightness in both directions
- » Modular system components

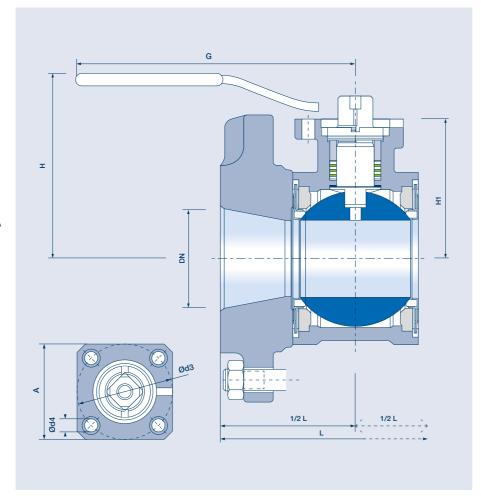
CONNECTIONS

Flange in accordance with EN 1092-1 (VIII, Xc) Flange in accordance with EN 1092-2 (III)

DIMENSIONS

Face-to-face dimensions in accordance with EN 558-1, series 27

ACCEPTANCE TESTING


- » Seat leak tightness: EN 12266-1 P12, leakage rate A
- » Tightness to atmosphere: EN 12266-1 P11
- » Strength: EN 12266-1 P10

AUTOMATION

Flange connection in accordance with ISO 5211, allows for direct mounting of an actuator or by means of brackets. Pneumatic and electrical actuators utilizable.

TEMPERATURE

-196 °C to +400 °C (see pT diagram)

KHA-FK VARIANTS

REDUCED BORE

Material: Grey cast iron EN-GJL-250
(Material code III)*
Steel casting 1.0619
(Material code VIII)
Stainless steel casting 1.4408
(Material code Xc)
*refers to flange, body made of cast steel

		Dimer	nsions	;	PN			Мо	unting actu	for	Weight	
DN	L	Н	H1	G	Ш	VIII	Хс	ISO	Α	Ød3	Ød4	kg
65R50	170	131	90	315	16			F07	70	70	10	14
80R65	180	141	100	315	16			F07	70	70	10	19.4
100R80	190	162	122	500	16			F10	102	102	12	26
65R50	170	131	90	315		40	40	F07	70	70	10	15.3
80R65	180	141	100	315		40	40	F07	70	70	10	20.2
100R80	190	162	122	500		40	40	F10	102	102	12	28.8

BALLOSTAR® KHA-G

Threaded connection

GENERAL FEATURES

- » 3-piece ball valve with full or reduced bore
- » Floating ball, antistatic, lockable
- » Double tightness in both directions
- » Modular system components

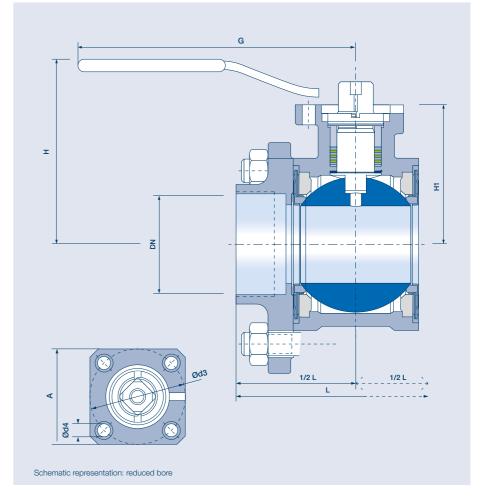
CONNECTIONS

Internal thread Rp in accordance with EN 10226-1

DIMENSIONS

Face-to-face dimensions in accordance with DIN 3202 Pt. 4

ACCEPTANCE TESTING


- » Seat leak tightness: EN 12266-1 P12, leakage rate A
- » Tightness to atmosphere: EN 12266-1 P11
- » Strength: EN 12266-1 P10

AUTOMATION

Flange connection in accordance with ISO 5211, allows for direct mounting of an actuator or by means of brackets. Pneumatic and electrical actuators utilizable.

TEMPERATURE

-196 °C to +400 °C (see pT diagram)

KHA-G VARIANTS

FULL BORE

Material: Grey cast iron EN-GJS-400-15
(Material code III)*
Steel casting 1.0619
(Material code VIII)
Stainless steel casting 1.4408
(Material code Xc)
*refers to threaded connection, body made of cast steel

REDUCED BORE

Material: Steel casting 1.0619 (Material code VIII) Stainless steel casting 1.4408 (Material code Xc)

		Dimer	sions			PN		Mounting flange for actuator				Weight
DN	L	Н	H1	G	Ш	VIII	Хс	ISO	Α	Ød3	Ød4	kg
3/8"	75	80	35	130		100	63	F04	42	42	5.8	0.8
1/2"	85	80	35	130		100	63	F04	42	42	5.8	0.9
3/4"	95	94	46	160		100	63	F04	42	42	5.8	1.5
1"	105	98	50	160		63	40	F04	42	42	5.8	1.9
1 1/4"	120	106	65	250		63	40	F05	50	50	7	3.2
1 1/2"	130	113	72	250		63	40	F05	50	50	7	4.8
2"	150	131	90	315		40	40	FO7	70	70	10	8.2
1/2" / R15	75	80	35	130	16			F04	42	42	5.8	0.6
3/4" / R15	80	80	35	130	16	100	63	F04	42	42	5.8	0.8
1" / R20	90	94	46	160	16	100	63	F04	42	42	5.8	1.4
1 1/4" / R25	110	98	50	160	16	63	40	F04	42	42	5.8	1.9
11/2" / R32	120	106	65	250	16	63	40	F05	50	50	7	2.8
2" /R40	140	113	72	250	16	63	40	F05	50	50	7	4.7

12|13

BALLOSTAR® KHA-SL

Long welding ends

GENERAL FEATURES

- » 3-piece ball valve with full or reduced bore
- » Floating ball, antistatic, lockable
- » Double tightness in both directions
- » Modular system components

CONNECTIONS

Welding ends in accordance with DIN EN 12627

DIMENSIONS

FTF dimensions in accordance with DIN EN 12982, series 68 (DN 10-40 and 20R15-40R32)

FTF dimensions in accordance with ANSI B16.10 Cl. 300 (DN 50-100 and 50R40-100R80)

FTF dimensions in accordance with DIN EN 12982, series 7

ACCEPTANCE TESTING

- » Seat leak tightness: EN 12266-1 P12, leakage rate A
- » Tightness to atmosphere: EN 12266-1 P11
- » Strength: EN 12266-1 P10

AUTOMATION

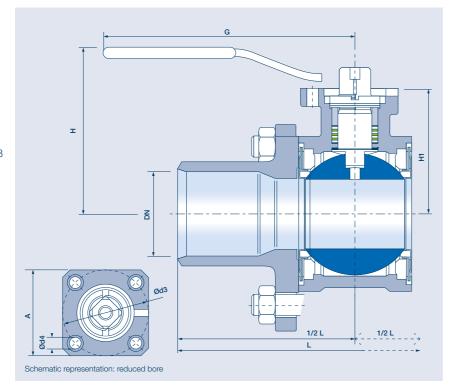
Flange connection in accordance with ISO 5211, allows for direct mounting of an actuator or by means of brackets. Pneumatic and electrical actuators utilizable.

TEMPERATURE

-196 °C to +400 °C (see pT diagram)

KHA-SL VARIANTS

FULL BORE


Material: Steel casting 1.0619 (Material code VIII)

Stainless steel casting 1.4408

(Material code Xc)

REDUCED BORE

Material: Steel casting 1.0619 (Material code VIII) Stainless steel casting 1.4408 (Material code Xc)

	Dimensions			P	N	Мо	_	flange lator	for	Weight	
DN	L	Н	H1	G	VIII	Xc	ISO	Α	Ød3	Ød4	kg
10	270	80	35	130	100	63	F04	42	42	5.8	1.1
15	270	80	35	130	100	63	F04	42	42	5.8	1.1
20	270	94	46	160	100	63	F04	42	42	5.8	1.9
25	270	98	50	160	63	40	F04	42	42	5.8	2.5
32	270	106	65	250	63	40	F05	50	50	7	3.9
40	270	113	72	250	63	40	F05	50	50	7	5.4
50	216	131	90	315	40	40	F07	70	70	10	8.5
65	241	141	100	315	40	40	F07	70	70	10	12.5
80	282	162	122	500	40	40	F10	102	102	12	21.2
100	305	176	135	500	40	40	F10	102	102	12	30.1
125	356	211	175	650	40	40	F12	125	125	15	55
20R15	270	80	35	130	100	63	F04	42	42	5.8	1.3
25R20	270	94	46	160	100	63	F04	42	42	5.8	2.2
32R25	270	98	50	160	63	40	F04	42	42	5.8	2.7
40R32	270	106	65	250	63	40	F05	50	50	7	3.9
50R40	216	113	72	250	63	40	F05	50	50	7	5.6
65R50	241	131	90	315	40	40	F07	70	70	10	8.9
80R65	282	141	100	315	40	40	F07	70	70	10	12.9
100R80	305	162	122	500	40	40	F10	102	102	12	23.1

BALLOSTAR® KHA-SK

Short welding ends

GENERAL FEATURES

- » 3-piece ball valve with full or reduced bore
- » Floating ball, antistatic, lockable
- » Double tightness in both directions
- » Modular system components

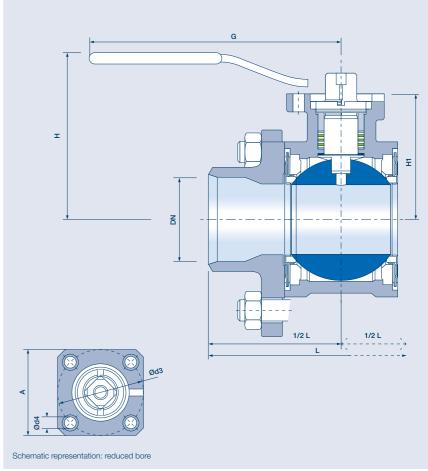
CONNECTIONS

Welding ends in accordance with DIN EN 12627

DIMENSIONS

Face-to-face dimensions in accordance with DIN EN 12982,

ACCEPTANCE TESTING


- » Seat leak tightness: EN 12266-1 P12, leakage rate A
- » Tightness to atmosphere: EN 12266-1 P11
- » Strength: EN 12266-1 P10

AUTOMATION

Flange connection in accordance with ISO 5211, allows for direct mounting of an actuator or by means of brackets. Pneumatic and electrical actuators utilizable.

TEMPERATURE

-196 °C to +400 °C (see pT diagram)

KHA-SK VARIANTS

FULL BORE

Material: Steel casting 1.0619 (Material code VIII)

> Stainless steel casting 1.4408 (Material code Xc)

REDUCED BORE

Material: Steel casting 1.0619 (Material code VIII)

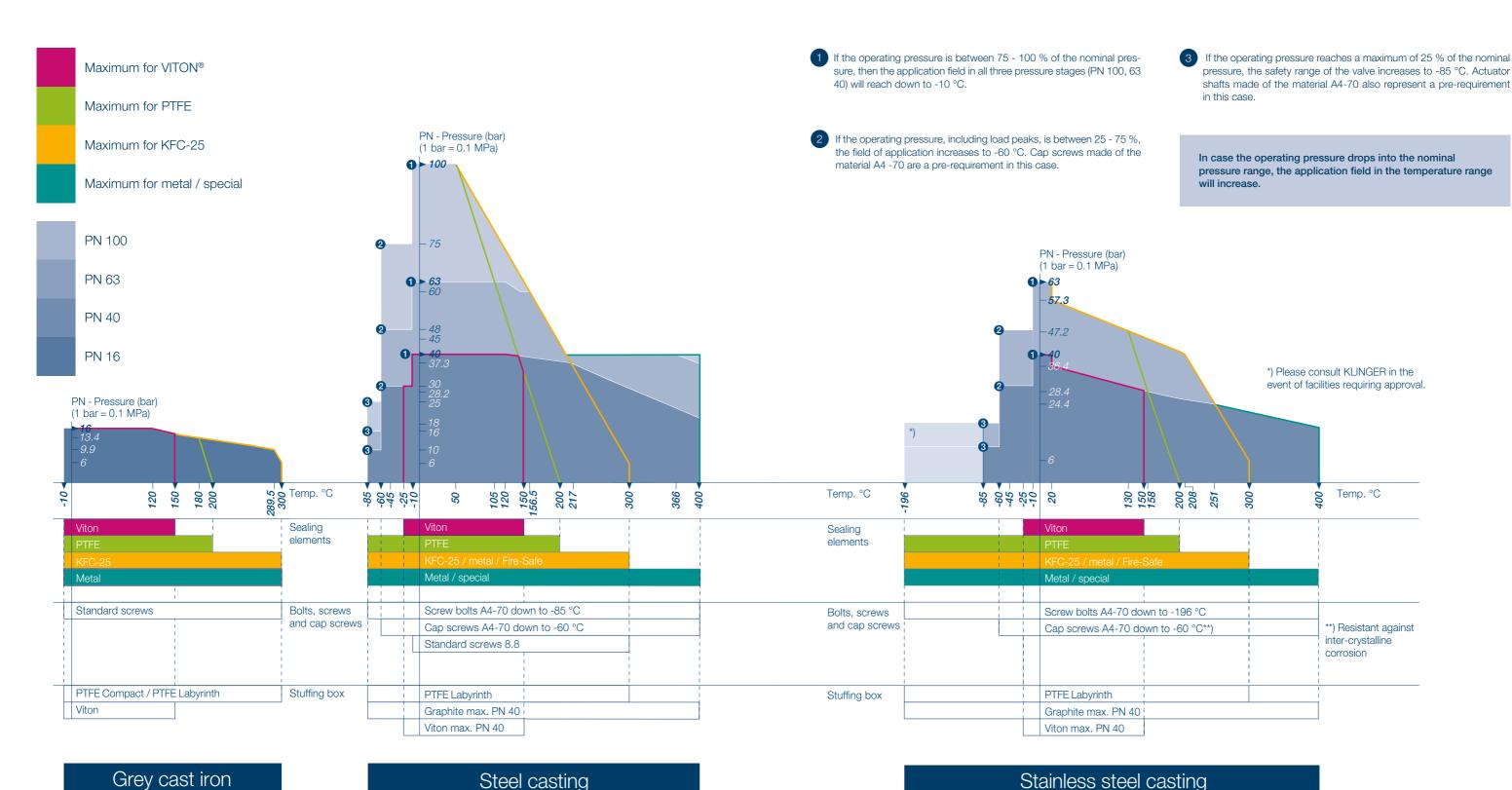
Stainless steel casting 1.4408

(Material code Xc)

		Dimer	nsions	•	Р	N	Mounting flange for actuator				Weight
DN	L	Н	H1	G	VIII	Xc	ISO	Α	Ød3	Ød4	kg
10	70	80	35	130	100	63	F04	42	42	5.8	0.6
15	75	80	35	130	100	63	F04	42	42	5.8	0.8
20	90	94	46	160	100	63	F04	42	42	5.8	1.4
25	100	98	50	160	63	40	F04	42	42	5.8	1.6
32	110	106	65	250	63	40	F05	50	50	7	3
40	125	113	72	250	63	40	F05	50	50	7	4.7
20R15	90	80	35	130	100	63	F04	42	42	5.8	0.8
25R20	100	94	46	160	100	63	F04	42	42	5.8	1.4
32R25	110	98	50	160	63	40	F04	42	42	5.8	1.8
40R32	125	106	65	250	63	40	F05	50	50	7	3.1
50R40	150	113	72	250	63	40	F05	50	50	7	5

14|15

AREAS OF UTILIZATION


Pressure and temperature ranges

The pT diagrams illustrate the influence of the three body materials, the sealing materials and the actuator shafts on the area of utilization of the ball valve.

This represents safety at the highest level. Insert your operating point into the diagram fields and you will identify whether your safety reserves meet your requirements. At

Material code Xc

the same time, you will see which parameters may require further change. Carrying out your selection on the basis of this principle, you will optimize the cost-effectiveness of your valve.

16|17

Material code VIII

Material code III

AREAS OF UTILIZATION

Stuffing boxes

Sealing elements

ACTUATOR SELECTION

Actuation torque for the various seals

Non diam	ninal neter				D	ifferent	ial press	sure (ba	r)			
D	N	0	0 5 10 16 20 25 30 40 50 63 100									
Inch	mm		Torque (Nm)									

Nom		Diffe	rential p	ressure	(bar)				
D	N	0 5 10							
Inch	mm	Torque (Nm)							

KFC-25

171										
3/8"	10	6	6.2	6.4	6.6	6.8	7	7.2	7.6	8
1/2"	15	6	6.2	6.4	6.6	6.8	7	7.2	7.6	8
3/4"	20	12	12.4	12.7	13.1	13.4	13.8	14.1	14.8	15.5
1"	25	14	15	16.1	17.3	18.1	19.2	20.2	22.3	24.3
1 ¹ / ₄ "	32	17	18.4	19.9	21.6	22.7	24.1	25.6	28.4	31.3
1 1/2"	40	25	27.8	30.6	33.9	36.1	38.9	41.7	47.2	52.8
2"	50	37	40.6	44.3	48.6	51.5	55.1	58.8	66	
2 1/2"	65	60	66.3	72.5	80	85	91.3	97.5	110	
3"	80	96	114	132	153.6	168	186	204	240	
4"	100	160	183.8	207.5	236	255	278.8	302.5	350	
5"	125	270	317.5	365	422	460	507.5	555	650	
6"	150	270	317.5	365	422					

VITON

10

10

19

8.5

8.5

16.4

27

35 60

1"	25	14	15.9	17.8	20
1 ¹ / ₄ "	32	18	20.2	22.4	25
1 1/2"	40	25	29.7	34.4	40
2"	50	40	49.4	58.8	70
2 1/2"	65	55	72.2	89.4	110
3"	80	100	150	200	260
4"	100	160	219.4	278.8	350

PTFE

3/8"	10	5.4	5.6	5.8	6	6.1	6.3	6.5	6.4	7.2	7.7	9
1/2"	15	5.4	5.6	5.8	6	6.1	6.3	6.5	6.4	7.2	7.7	9
3/4"	20	10.8	11.1	11.4	11.8	12.1	12.4	12.7	13.3	14	14.8	17.1
1"	25	12.6	13.5	14.5	15.6	16.3	17.2	18.2	20	21.9	24.3	
1 1/4"	32	15.3	16.6	17.9	19.4	20.4	21.7	23	25.6	28.2	31.5	
1 1/2"	40	21.3	23.6	26	28.8	30.7	33.1	35.4	40.1	44.9	51	
2"	50	30.3	33.3	36.3	39.9	42.2	45.2	48.2	54.1			
2 1/2"	65	51	56.3	61.6	68	72.3	77.6	82.9	93.5			
3"	80	72	85.5	99	115.2	126	139.5	153	180			
4"	100	120	137.8	155.6	177	191.3	209.1	226.9	262.5			
5"	125	202.5	238.1	273.8	316.5	345	380.6	416.3	487.5			
6"	150	202.5	238.1	273.8	316.5							

For standard computations, KLINGER recommends the factor 1.5, i.e. using plus 50 %. With regard to ball valves with reduced bores, the values of the preceding row, i.e. a smaller nominal diameter, must be taken into account.

METAL/SPECIAL

3/	8	10	7.5	7.8	8.2	8.5	8.8	9.1	9.5	10.1	10.8	11.6	14
1/	2	15	7.5	7.8	8.2	8.5	8.8	9.1	9.5	10.1	10.8	11.6	14
3/	4	20	15	15.7	16.4	17.2	17.8	18.5	19.2	20.6	22	23.8	29
1	"	25	18	19.4	20.9	22.6	23.7	25.1	26.6	29.4	32.3	36	
1 1	/4"	32	25	26.7	28.3	30.3	31.7	33.3	35	38.3	41.7	46	
1 1	/2"	40	40	44.8	49.5	55.2	59	63.8	68.6	78.1	87.6	100	
2		50	55	64.4	73.8	85	92.5	101.9	111.3	130			
2 1	/ ₂ "	65	85	101.9	118.8	139	152.5	169.4	186.3	220			
3	"	80	140	172.5	205	244	270	302.5	335	400			
4		100	250	293.8	337.5	390	425	468.8	512.5	600			
5	ju -	125	450	580	710	866	970	1,100					
6	,	150	450	580	710	866							

SIZE OF BALL VALVE

Flow rate Δp in bar Pressure loss in kg/m³ Density W in m/s Velocity K Flow coefficient in m³/h Pressure loss coefficient

Allows for the calculation of:

TECHNICAL DETAILS

Flow characteristics for the determination of the nominal diameter

$$K_{v} = Q * \sqrt{\frac{\rho}{1000 * \Delta \rho}}$$

The valve is to be selected in a manner that the K-value is greater, or the ζ -value less than the computed value.

FLOW VALUES

DN (mm)	ζ	K_{vs} -value		
10	0.35	6.8		
15	0.23	18.8		
20	0.20	35.8		
25	0.14	66.8		
32	0.12	118		
40	0.11	193		
50	0.10	316		
65	0.076	607		
80	0.067	980		
100	0.058	1,645		
125	0.051	2,742		
20R15	0.96	16.3		
25R20	0.54	34		
32R25	0.41	63.9		
40R32	0.35	108		
50R40	0.33	174		
65R50	0.32	299		
80R65	0.31	460		
100R80	0.30	730		
125R100	0.30	1,141		
150R125	0.30	1,642		

PRESSURE LOSSES

$$\Delta p = \zeta * \frac{\rho}{2} * w^2 * 10^{-5}$$

$$\Delta p = \left(\frac{Q}{k_v}\right)^2 * \frac{\rho}{1000}$$

The characteristic unit for shut-off and control valves is the K_-value. The values provided in the table apply to a H₂O flow medium with a temperature of 5 – 30 °C, a density of 1000 kg/m 3 and a pressure loss of p = 1 bar at the valve.

In metric measurement systems the characteristic unit utilized is the K_v-value. In countries using inches, the characteristic unit is described by means of the cV-value. It provides how many US gal/min of water, at a temperature of 60 °F and with a pressure loss of 1 psi, flow through the valve.